Integrating structural geological data into the inverse modelling framework of iTOUGH2

نویسندگان

  • J. Florian Wellmann
  • Stefan Finsterle
  • Adrian Croucher
چکیده

The validity of subsurface flow simulations strongly depends on the accuracy of relevant rock property values and their distribution in space. In realistic simulations, this spatial distribution is based on two geological considerations: (1) the subsurface structural setting, and (2) smaller-scale heterogeneity within a hydrostratigraphic unit. Both aspects are subject to uncertainty, whereas techniques to address heterogeneity are well established, no general method exists to evaluate the influence of structural uncertainties. We present a method to include structural geological data (e.g. observations of geological contacts and faults) directly into an inversion framework, with the aim of enabling the inversion routine to adapt a full 3-D geological model with a set of geological parameters. In order to achieve this aim, we use a set of Python modules to combine several pre-existing codes into one workflow, to facilitate the consideration of a structural model in the typical model evaluation steps of sensitivity analysis, parameter estimation, and uncertainty propagation analysis. In a synthetic study, we then test the application of these three steps to analyse CO2 injection into an anticlinal structure with the potential of leakage through a fault zone. We consider several parts of the structural setting as uncertain, most importantly the position of the fault zone. We then evaluate (1) how sensitive CO2 arriving in several observation wells would be with respect to the geological parameters, (2) if it would be possible to determine the leak location from observations in shallow wells, and (3) how parametric uncertainty affects the expected CO2 leakage amount. In all these cases, our main focus is to consider the influence of the primary geological data on model outputs. We demonstrate that the integration of structural data into the iTOUGH2 framework enables the inversion routines to adapt the geological model, i.e. to re-generate the entire structural model based on changes in several sensitive geological parameters. Our workflow is a step towards a combined analysis of uncertainties not only in local heterogeneities but in the structural setting as well, for a more complete integration of geological knowledge into conceptual and numerical models. & 2013 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Revising the Static Geological Reservoir Model of the Upper Triassic Stuttgart Formation at the Ketzin Pilot Site for CO2 Storage by Integrated Inverse Modelling

The Ketzin pilot site for CO2 storage in Germany has been operated from 2007 to 2013 with about 67 kt of CO2 injected into the Upper Triassic Stuttgart Formation. Main objectives of this undertaking were assessing general feasibility of CO2 storage in saline aquifers as well as testing and integrating efficient monitoring and long-term prediction strategies. The present study aims at revising t...

متن کامل

Underground contour (UGC) mapping using potential field, well log and comparing with seismic interpretation in Lavarestan area

Coastal Fars gravimetry project in Fars province was carried out to find the buried salt domes and to determine characteristics of faults in this area. The Lavarestan structure was covered by 4203 gravimetry stations in a regular grid of 1000*250 m. Depth structural model of this anticline made in previous studies was based on geological evidences and structural geology measurements. In order t...

متن کامل

Rock physics characterization of shale reservoirs: a case study

Unconventional resources are typically very complex to model, and the production from this type of reservoirs is influenced by such complexity in their microstructure. This microstructure complexity is normally reflected in their geophysical response, and makes them more difficult to interpret. Rock physics play an important role to resolve such complexity by integrating different subsurface di...

متن کامل

iTOUGH2: FROM PARAMETER ESTIMATION TO MODEL STRUCTURE IDENTIFICATION

iTOUGH2 provides inverse modeling capabilities for the TOUGH2 family of nonisothermal multiphase flow simulators. It can be used for a formalized sensitivity analysis, parameter estimation by automatic model calibration, and uncertainty propagation analyses. While iTOUGH2 has been successfully applied for the estimation of a variety of parameters based on different data types, it is recognized ...

متن کامل

Fundamentals of 3D modelling and resource estimation in coal mining

The prerequisite of maintaining an efficient and safe mining operation is the proper design of a mine by considering all aspects. The first step in a coal mine design is a realistic geometrical modelling of the coal seam(s). The structural features such as faults and folding must be reliably implemented in 3D seam models. Upon having a consistent seam model, the attributes such as calorific val...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Geosciences

دوره 65  شماره 

صفحات  -

تاریخ انتشار 2014